
Submission Date: August 31, 2004
* trent@jp.ibm.com，Server Systems Department Number 1

1

Autonomic-based Persistent Memory Management in AIX
- Improving System Performance and Reliability -

Scott Trent *

Determining the most efficient tuning strategy for AIX persistent memory is challenging since system memory and file

usage characteristics can change significantly over time making it impossible for any single set of values to be
universally applicable. Yet, incorrect tuning can result in highly visible performance incidents. After analyzing
commonly used tuning strategies, this paper introduces an original but broadly applicable autonomic program developed
by the author to solve real-world persistent memory performance problems through analyzing memory usage
characteristics and dynamically modifying tuning parameters.

Key Words & Phrases: Autonomic Computing, MAPE, AIX, Performance Tuning, File Cache

1. Introduction

Although the amount of persistent memory available
on an AIX system for caching disk files in memory
is tunable, an improper setting can cause serious
performance problems and even contribute to
system instability through thrashing. Yet, the
correct setting may vary over time as the usage
characteristics of the system change. Even worse,
certain operations such as backups may have a
residual negative impact on future performance.
There are also limitations with commonly utilized
techniques such as setting extreme limits to
persistent memory, adding physical memory,
pinning programs and data in physical memory,
reducing and spacing out load, etc.

Even if a specific system has a constant unchanging
load, determining the ideal tuning strategy is often a
time consuming process of trial and error. Thus, the
use of an autonomic Monitor, Analyze, Plan,
Execute (MAPE) loop is desirable to determine the
correct setting to use for a changing environment.
[1] Since this specific dynamic functionality is not
yet built into AIX, this paper introduces and
analyzes the benefits of a custom autonomic
program that maintains AIX persistent memory
tuning attributes. The techniques introduced in this
paper address a common need to maintain
acceptable system performance through effectively
managing AIX file cache usage.

2. The AIX File Cache Mechanism

2.1 The Benefit and the Challenge

Data caching is a common performance improving
technique used in all levels of computer hardware
and software architecture. [2, 3] The AIX file

cache contains recently used file system pages
which can be used to avoid repetitive and time
consuming physical disk access. [4, 5, 6]

Figure 1: Benefit of File Cache

In Figure 1, the second search command (which
accesses the file cache) runs in less than 7% of the
time consumed by the first search command which
must access the physical disk. However, the
benefits of the file cache can be nullified with an
overly restrictive setting. In Figure 2, file caching
is highly restricted, resulting in a search time that is
almost twice as long as the worst case in Figure 1.

Figure 2: Negative Effects of Restrictive Tuning

Given these two examples, one might conclude that
the file cache should be made very large. However,

vmo -o minperm%=1 -maxclient%=2 -o maxperm%=2
-o strict_maxperm=1

Setting minperm% to 1
Setting maxperm% to 2
Setting maxclient% to 2
Setting strict_maxperm to 1

time fgrep testsearchstring BIGFILE

real 0m44.13s
user 0m0.82s
sys 0m3.77s

time fgrep testsearchstring BIGFILE

real 0m25.70s
user 0m0.71s
sys 0m4.01s

time fgrep testsearchstring BIGFILE

real 0m1.76s
user 0m0.92s
sys 0m0.84s

2

an unlimited file cache can be risky. AIX uses a
Least Recently Used (LRU) algorithm to determine
which pages to keep in memory. Thus during
periods of memory stress, required (but relatively
less used) computational pages for a process may be
paged out. [5, 6] This effect is further reinforced
when the process needs to block on a page-in from
paging space, allowing other required computational
pages in the process to go unaccessed. These
pages then become candidates themselves for being
paged out, further impeding the process, and further
allowing other pages to become paged out.

This is not merely a theoretical risk. The author
has assisted many Customers with paging and
performance issues related to file cache. In one
particular case, users were concerned with very slow
system response in the morning. Analysis revealed
that the processes used for on-line transactions
during the day were largely paged out when backups
were performed during the night. The slow
response in the morning was caused by massive
page-in activity. Although performance was
improved by severely restricting the size of the file
cache, an excessively small value has the
performance risks identified above.

2.2 File Cache Tuning Parameters

Most memory on an AIX system can be classified as
“Persistent” (also known as “File Cache”) or
“Computational”. [3, 4, 6] Each page in persistent
memory directly maps to a page in a file on disk.
Computational memory pages such as heap or stack
contain dynamically generated data. Unix systems
have traditionally been designed to support a virtual
memory space that can be much larger than
available physical memory. In order to realize this,
during periods of high memory demand the Unix
kernel must determine which pages to keep in
memory, which to erase, which to write back to disk,
and which to write into a special paging area on disk
for future use. [2]

In AIX, there are four primary tuning parameters
which affect this file cache usage. [4, 5, 6, 7]
These parameters can be modified with the vmtune
command in the bos.adt.samples fileset prior to AIX
5L 5.2, or the vmo command starting in version 5.2.

Traditionally, the most important parameters are
minperm and maxperm. AIX documentation states
that when the percentage of physical memory used
for file cache exceeds maxperm percent, that only
file cache pages will be released or “stolen” when
additional physical memory is required. If less

than minperm percent of physical memory is used
for file cache, then when pages must be “stolen” (or
released) then both file cache and computational
pages will be chosen. If the percentage of physical
memory used by file cache is between minperm and
maxperm then file pages will generally be chosen
unless the repage rate for file pages is higher than
that for computational pages. [6, 7] The
documentation does not emphasize that the Virtual
Memory Manager (VMM) is one of the most
complex areas of the AIX kernel, and that
exceptions to these documented rules do exist. For
example, given this standard explanation, one would
not expect file cache usage to exceed maxperm
percent of physical memory, yet this is not an
uncommon occurrence.

Of the remaining parameters, strict_maxperm was
added in AIX 4.3.3 to enforce the maxperm
limitation. By default, strict_maxperm is 0,
permitting file cache usage to exceed maxperm.
When strict_maxperm is 1, file cache usage is not
allowed to exceed maxperm percent of physical
memory. The maxclient parameter was added in
AIX 5L to control the use of file cache for JFS2 files
which are classified as “client memory”, along with
pages cached from non-JFS file sources such as NFS.
[6]

Actual file cache use percentage can be determined
from the numperm value displayed by vmtune on
pre-5.2 systems. “vmtune –A” and “vmstat –v”
can be used on 5.2 or later systems (Figure 3).
topas and “svmon –G” also display useful
information about file cache and other memory
usage. [5, 6]

Figure 3: Viewing numperm on AIX 5.2

3. Common Persistent Memory Tuning Strategies

The ideal file cache tuning strategy will enable as
much memory as possible for file cache while not
causing process computational memory pages to be
paged out which will impede future computation.

3.1 Default File Cache Tuning

Although, by default, minperm is 20% and maxperm
is 80%, it is not uncommon to see actual file cache
size (numperm) ranging from several percent to over

/usr/samples/kernel/vmtune -A | grep perm

 20.0 minperm percentage
 80.0 maxperm percentage
 5.9 numperm percentage

3

90% depending on the characteristics of the
processes running on that system. If the “working
set”, the amount of memory that the system requires
to make progress, is sufficiently less than the
physical memory size, and if computational/file
cache memory demands made by processes on the
system do not conflict, then the default values may
be fine. However, if vital computational data pages
are paged-out, causing performance problems, then
some other strategy may be required. The pi and
po columns displayed by the vmstat command are
commonly used to diagnose paging activity. (Figure
4) The topas command also displays useful
paging and memory statistics.

3.2 Highly Restricted File Cache Tuning

A highly restricted file cache size can be effective on
systems that do not require a larger file cache. Yet,
the correct setting which both prevents paging, and
does not otherwise impact performance must be
determined by trial and error. These values are
likely to change over time as either system load
increases or as system configuration evolves.
Values which are too low can cause processes to
experience the performance impact demonstrated in
Figure 2.

3.3 Work Load Manager

If categorization and strict prioritization among
processes by user name, group name, program name,
or WLM tag can be made, it is possible to ensure
that certain groups of processes receive a predefined
amount of memory or CPU. [8] Starting in AIX 5L
it is also possible to control disk I/O bandwidth
usage. Yet, it is not always possible to separate
resource utilization into separate classes. These
usage characteristics also change over time, making
it hard to predict the perfect work load manager
configuration.

3.4 Pinning Pages in Physical Memory

It is common for vital kernel code and data to be
pinned in physical memory to prevent paging. It is
also possible to use the AIX plock() function from a
user process to pin user process text and/or data in
memory. This can be useful for a small vital
process. Yet, pinning too much data in memory
can directly cause memory contention. (It is also
important to use either the ulimit command or API
to limit the amount of accessible memory to the
process before calling the plock() function,
otherwise, hundreds of megabytes of data will be
pinned in memory, reducing the usable physical

memory on the system for other processes. (See
plock() man page.)) Memory pinning should only
be used when there is sufficient unused physical
memory.

Although this approach can prevent a specific
process from having its pages swapped out to paging
space, it does not protect the process from other
effects of paging or thrashing. For example, a
system which is thrashing uses significant CPU
shuttling pages back and forth from paging space,
thus less CPU time is available for all processes,
including any pinned processes even they may be
immune from actual paging.

3.5 Reduced Load

Since memory demand is usually a direct result of
application load, reducing the number of
transactions, users, programs, connections, etc, on a
system can also help resolve memory problems.
The exact technique used, and the applicability of
this approach clearly depends on user requirements.

3.6 Additional Physical Memory

Extended page-in and page-out activity, shown
through the vmstat columns pi and po (see Figure 4),
when file cache usage is low, is an indication that
the system may require additional physical memory.
Increasing physical memory when extensive file
cache space is being used may not improve
performance. For example, when file backup
causes processes to page out, performance will
continue to suffer unless a file cache larger than the
sum of all files being backed up can co-exist with
computational memory. Assuming that average
memory and disk sizes increase in parallel, a more
reasonable solution would be to terminate processes
that will page before the backup and restart them
afterwards, or to limit file cache so that it does not
cause computational pages to be paged out.

Figure 4: Excessive Paging seen through vmstat

vmstat
kthr memory page faults cpu
r b avm fre re pi po fr sr cy in sy cs us sy id wa
 2 1 333173 1079 0 239 320 182 3438 0 1344 101684 2410 26 26 25 23
 3 1 333173 1150 0 180 257 257 7944 0 1225 99789 2252 32 26 14 28
 2 2 333920 1022 0 270 840 1024 1763 0 1386 100585 2402 30 28 16 26
 2 2 333945 1107 0 331 454 329 5992 0 1439 103971 2559 31 29 12 27
 3 0 333208 725 0 1318 199 199 3886 0 2377 98920 4488 30 30 18 21
 2 1 333173 475 0 527 236 252 26843 1 1583 99783 3082 28 27 24 22
 3 1 333173 474 0 316 315 315 2841 0 1368 102119 2650 27 25 25 24
 2 1 333173 475 0 242 243 243 6844 0 1299 101807 2439 28 25 24 22
 2 1 333173 1131 0 121 761 769 55780 0 1260 101195 2300 27 26 25 22
 2 1 333173 1132 0 174 156 180 14073 0 1257 101946 2295 26 26 24 24

4

4. An Original Autonomic Solution

An autonomic MAPE control loop is an excellent
technique to dynamically analyze system
characteristics which change over time and modify
the necessary tuning values on-the-fly. As the
acronym indicates, a MAPE loop uses sensors to
monitor an element, analyze this data, plan to
improve or maintain the situation, execute the plan
using effectors, and then repeats. [1, 9]

Figure 5: autotune: MAPE Based Architecture

4.1 autotune: Implementation Details

The author developed autotune, a unique AIX
program, to monitor and control the AIX file cache.
The MAPE control loop, logic, and rules are all
contained within autotune.c which uses an
independent module, autolib, that contains sensors
and effectors (see Figure 5). Although the program
is written entirely in C, an object oriented approach
is used within autolib to hide the sensor/effector
implementation details from the calling program.
The sensor gathers performance statistics about the
current file cache tuning parameters with the
vmgetinfo() API, and current running system
statistics including memory usage and paging
through API’s provided in libperfstat. [7] The
effector modifies file cache related tuning
parameters with the misleadingly named AIX
internal system call vmgetinfo(). (This API is used
to both get and set VM tuning parameters) Early
versions of autolib called the vmtune commands
using fork()/exec() to enhance portability among
different versions of AIX. However, during high
memory stress, the time required to call an external
command to change parameters made the program
entirely ineffective. Thus, autolib was enhanced to
control VM tuning parameters via the vmgetinfo()
API. The drawback is that the structures passed to
and from vmgetinfo() are only declared in unshipped
header files, so a different version of autolib is
needed for each major version of AIX.

To assure that autotune is always runable, even
during periods of very high stress, setpri() was used
to increase the priority, and plock() was used to
ensure that it would not be paged out. Additionally,
autotune was developed to consume minimal
resources. Even while monitoring and
coordinating memory on a highly memory stressed
environment, autotune was observed to have a CPU
time to real time ratio of less than 0.1%.

4.3 Original Automatic Tuning Rules and Policies

As a proof-of-concept project, autotune was
designed with the following general tuning rules and
policies.

Decrease File Cache Rule: If pages are being read
and written from paging space simultaniously, then
reduce minperm, maxperm, and maxclient, taking
into account the degree of paging and the minimum
allowable values. If this continues, turn
strict_maxperm on.

Increase File Cache Rule: If paging space
activity has not occurred “for a while”, and there is
sufficient available memory, gradually increase
maxperm and maxclient.

Table 1: autotune Policy Values
Policy Description Default Value
Monitor Interval 4 seconds
Maximum maxperm 90%
Minimum maxperm 6%
Maximum minperm 20%
Minimum minperm 2%
Maximum maxclient 90%
Minimum maxclient 6%
Rearm interval for
increasing file cache

60 seconds

File cache increase delta varies
File cache decrease delta varies
Numeric definition of
sufficient available
memory for increase

varies

Paging threshold for
modifying file cache

varies

4.4 Test Environment

Tests were performed on a 375 Mhz 4-way SP node
running a 64-bit AIX 5L 5.2 ML3 kernel with 2GB
of physical memory. Files were stored in a
dedicated JFS file system. (A JFS2 file system
would likely have resulted in better results, since

 autolib

AIX Kernel: VMM Subsystem

 autotune: control logic

Sensors:
libperfstat
vmgetinfo

Effectors:
vmgetinfo()

Monitor

Analyze Plan
Execute

AIX File Cache

5

unlike maxperm, maxclient is strictly enforced by
default.)

Two 32-bit large-memory model test programs were
used as CPU/memory bound and disk I/O bound
processes. The CPU bound program allocates a
user specified amount of memory and repeatedly
writes to all of this memory, reporting the number of
megabytes of memory that were accessed every 10
seconds. The disk I/O bound program creates a file
of user specified size, and then repeatedly reads the
entire file, reporting the number of megabytes that
were read every 10 seconds. The test machine was
also concurrently running a large db2 (version 8.01)
database to further duplicate real world conditions.

Performance data was gathered from output
generated by the test programs, the autotune
program, and Nigel Griffiths’ performance
monitoring tool, nmon. [10]

4.5 Base Line: Test Results with Sufficient Memory

The test programs were executed with and without
autotune with sufficient memory to determine ideal
performance of the test programs, and verify that the
autotune tool does not negatively impact
performance in this case. Both with and without
the autotune tool, the CPU bound process is
consistently able to process around 6,000 megabytes
every 10 seconds, and the disk I/O bound process is
consistently able to process around 3,000 megabytes
every 10 seconds. The disk I/O bound process is
started and terminated in the middle of the test to
determine the effect it has on the CPU bound
process. When there are sufficient memory and
CPU resources, this impact is less than 3%, and can
be seen in Figures 6 and 7 as a very slight dip in the
CPU bound process’s performance. This data
demonstrates that autotune does not have a
significant negative impact on the normal sufficient
memory case.

Performance with Sufficient Memory and no Tuning

0

1000

2000

3000

4000

5000

6000

7000

10 30 50 70 90 11
0

13
0

15
0

Seconds

M
e
ga

by
te

s
P
ro

c
e
ss

e
d

CPU Bound
Performance

Disk I/O Bound
Performance

Figure 6: Sufficient Memory without autotune

Performance with Sufficient Memory and autotune

0

1000

2000

3000

4000

5000

6000

7000

1
0

3
0

5
0

7
0

9
0

1
1
0

1
3
0

1
5
0

1
7
0

1
9
0

2
1
0

Seconds

M
e
ga

by
te

s
P
ro

c
e
ss

e
d

CPU Bound
Performance

Disk I/O Bound
Performance

Figure 7: Sufficient Memory with autotune

4.6 Benefit: Test Results with Insufficient Memory

Next, the test programs were executed with and
without autotune in an environment without
sufficient physical memory, to determine the effect
that autotune has on their performance.

Performance with Insufficient Memory and no Tuning

0

1000

2000

3000

4000

5000

6000

7000

1
0

4
0

7
0

1
0
0

1
3
0

1
6
0

1
9
0

2
2
0

2
5
0

2
8
0

Seconds

M
e
ga

by
te

s
P
ro

c
e
ss

e
d

CPU Bound
Performance

Disk I/O Bound
Performance

Figure 8: Insufficient Memory without Tuning

Performance with Insufficient Memory and autotune

0

1000

2000

3000

4000

5000

6000

7000

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

Seconds

M
e
ga

by
te

s
P
ro

c
e
ss

e
d

CPU Bound
Performance

Disk I/O Bound
Performance

Figure 9: Insufficient Memory with autotune

Without autotune, the disk I/O bound process
prevents the CPU bound process from making
progress (Figure 8). In fact, it takes the CPU
bound process over 30 seconds to resume AFTER
the disk I/O bound process terminates (Figure 8).
With autotune, immediate tuning prevented the disk
I/O bound process using excessive memory, but it
still took about a minute for the CPU bound process
to recover (Figure 9). However, the advantage is
that the CPU bound process recovers while the
Disk I/O bound process is still running! (Figure 9)
This is desirable when priority should be placed on

6

CPU bound processes providing, for instance, user
oriented real time services. Additionally, unlike
using a statically limited file cache, when the CPU
bound process terminates, the disk I/O bound
process will run at full speed.

These results are enforced by the data on
paging-space activity measured and graphed with
the nmon tool. [10] Both high memory demand and
an initial page-out spike are present with and
without autotune. However with autotune, this
spike is 30% smaller and further page-out activity is
suppressed. While as without autotune, page-out
activity (which contributes directly to CPU and
memory bound process performance degradation)
continue throughout the test. (Figures 10 and 11.)

Paging Activity with Insufficient Memory and no Tuning

0

200

400

600

800

1
2
:4

3

1
2
:4

3

1
2
:4

3

1
2
:4

3

1
2
:4

3

1
2
:4

4

1
2
:4

4

1
2
:4

4

1
2
:4

4

1
2
:4

4

1
2
:4

5

1
2
:4

5

1
2
:4

5

1
2
:4

5

1
2
:4

5

1
2
:4

5

1
2
:4

6

1
2
:4

6

1
2
:4

6

1
2
:4

6

1
2
:4

6

pgsin pgsout

Figure 10:Paging:Insufficient Memory, No autotune

Paging with Insufficient Memory and autotune

0

100

200

300

400

500

600

13
:5
0

13
:5
1

13
:5
1

13
:5
1

13
:5
1

13
:5
2

13
:5
2

13
:5
2

13
:5
2

13
:5
2

13
:5
2

13
:5
3

pgsin pgsout

Figure 11:Paging:Insufficient Memory with autotune

5. In Conclusion

This paper has presented a successful and broadly
applicable proof-of-concept in the unique
application of an autonomic MAPE control loop to
solve the AIX file cache tuning problem. The
original autonomic autotune program demonstrates
the validity of this dynamic approach by improving
performance in highly memory constrained
environments that would ordinarily lead to severe
performance degradation caused by heavy paging or
thrashing. This technology is directly applicable to
solving performance problems in the field before
they happen.

The next logical step is to extend and apply the
approach and tool described in this paper to monitor
and tune other operating system variables that affect
reliability and serviceability as well as performance.

Bibliography

[1] IBM, “An architectural blueprint for autonomic

computing”, www.ibm.com/autonomic/pdfs/
ACwpFinal.pdf, April 2003

[2] Tanenbaum, Andrew, Modern Operating
Systems, Prentice Hall, ISBN 0136386776, 2001

[3] Cannon, Jones, Trent, Simply AIX 4.3, Edition 2,
Prentice Hall, ISBN 0130213446, 1999.

[4] Furutera, et al, AIX Operating Systems Concepts
and Advanced System Administration, ASCII,
ISBN 4756139124, 2001.

[5] Chukran, Accelerating AIX:Performance Tuning
for Programmers and System Administrators,
Addison-Wesley, ISBN 0201633825, 1998

[6] IBM Corporation, AIX 5L Version 5.2
Performance Management Guide, IBM,
SC23-4876-00, May 2004.

[7] IBM, AIX 5L Version 5.2 Performance Tools and
Guide and Reference, SC23-4859-01, May 2003

[8] Gfroerer, Castro, Tezulas, Yu, Berg, Kim, AIX
5L Workload Manager (WLM), IBM, ISBN
0738422436, 2001

[9] Stojanovic, Schneider, Maedche, “The Role of
Ontologies in Autonomic Computing Systems”,
IBM Systems Journal, Volume 43, Number 3,
2004.

[10] Griffiths, N, “nmon performance -- free
tool to analyze AIX”, www.ibm.com/
developerworks/eserver/articles/analyze_aix,
November 4, 2003

© Copyright IBM Japan Systems Engineering, Co Ltd.
2004 All rights reserved.

