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Determining the most efficient tuning strategy for AIX persistent memory is challenging since system memory and file 

usage characteristics can change significantly over time making it impossible for any single set of values to be 
universally applicable.  Yet, incorrect tuning can result in highly visible performance incidents.  After analyzing 
commonly used tuning strategies, this paper introduces an original but broadly applicable autonomic program developed 
by the author to solve real-world persistent memory performance problems through analyzing memory usage 
characteristics and dynamically modifying tuning parameters.  
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1. Introduction 
 
Although the amount of persistent memory available 
on an AIX system for caching disk files in memory 
is tunable, an improper setting can cause serious 
performance problems and even contribute to 
system instability through thrashing.  Yet, the 
correct setting may vary over time as the usage 
characteristics of the system change.  Even worse, 
certain operations such as backups may have a 
residual negative impact on future performance.  
There are also limitations with commonly utilized 
techniques such as setting extreme limits to 
persistent memory, adding physical memory, 
pinning programs and data in physical memory, 
reducing and spacing out load, etc. 
 
Even if a specific system has a constant unchanging 
load, determining the ideal tuning strategy is often a 
time consuming process of trial and error. Thus, the 
use of an autonomic Monitor, Analyze, Plan, 
Execute (MAPE) loop is desirable to determine the 
correct setting to use for a changing environment. 
[1] Since this specific dynamic functionality is not 
yet built into AIX, this paper introduces and 
analyzes the benefits of a custom autonomic 
program that maintains AIX persistent memory 
tuning attributes.  The techniques introduced in this 
paper address a common need to maintain 
acceptable system performance through effectively 
managing AIX file cache usage.  
 
 
2. The AIX File Cache Mechanism 
 
2.1 The Benefit and the Challenge 
 
Data caching is a common performance improving 
technique used in all levels of computer hardware 
and software architecture. [2, 3]  The AIX file 

cache contains recently used file system pages 
which can be used to avoid repetitive and time 
consuming physical disk access. [4, 5, 6]   
 

 
Figure 1: Benefit of File Cache   
 
In Figure 1, the second search command (which 
accesses the file cache) runs in less than 7% of the 
time consumed by the first search command which 
must access the physical disk.  However, the 
benefits of the file cache can be nullified with an 
overly restrictive setting.  In Figure 2, file caching 
is highly restricted, resulting in a search time that is 
almost twice as long as the worst case in Figure 1. 
 

 
Figure 2: Negative Effects of Restrictive Tuning 
 
Given these two examples, one might conclude that 
the file cache should be made very large.  However, 

# vmo -o minperm%=1 -maxclient%=2 -o maxperm%=2 
-o strict_maxperm=1 
 
Setting minperm% to 1 
Setting maxperm% to 2 
Setting maxclient% to 2 
Setting strict_maxperm to 1 
 
# time fgrep testsearchstring BIGFILE 
 
real    0m44.13s 
user    0m0.82s 
sys     0m3.77s 

# time fgrep testsearchstring BIGFILE 
 
real    0m25.70s 
user    0m0.71s 
sys     0m4.01s 
 
# time fgrep testsearchstring BIGFILE 
 
real    0m1.76s 
user    0m0.92s 
sys     0m0.84s 
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an unlimited file cache can be risky.  AIX uses a 
Least Recently Used (LRU) algorithm to determine 
which pages to keep in memory.  Thus during 
periods of memory stress, required (but relatively 
less used) computational pages for a process may be 
paged out. [5, 6]  This effect is further reinforced 
when the process needs to block on a page-in from 
paging space, allowing other required computational 
pages in the process to go unaccessed.  These 
pages then become candidates themselves for being 
paged out, further impeding the process, and further 
allowing other pages to become paged out.   
 
This is not merely a theoretical risk.  The author 
has assisted many Customers with paging and 
performance issues related to file cache.  In one 
particular case, users were concerned with very slow 
system response in the morning. Analysis revealed 
that the processes used for on-line transactions 
during the day were largely paged out when backups 
were performed during the night.  The slow 
response in the morning was caused by massive 
page-in activity.  Although performance was 
improved by severely restricting the size of the file 
cache, an excessively small value has the 
performance risks identified above.  
 
2.2 File Cache Tuning Parameters 
 
Most memory on an AIX system can be classified as 
“Persistent” (also known as “File Cache”) or 
“Computational”. [3, 4, 6]  Each page in persistent 
memory directly maps to a page in a file on disk.  
Computational memory pages such as heap or stack 
contain dynamically generated data.  Unix systems 
have traditionally been designed to support a virtual 
memory space that can be much larger than 
available physical memory.  In order to realize this, 
during periods of high memory demand the Unix 
kernel must determine which pages to keep in 
memory, which to erase, which to write back to disk, 
and which to write into a special paging area on disk 
for future use.  [2] 
 
In AIX, there are four primary tuning parameters 
which affect this file cache usage. [4, 5, 6, 7]  
These parameters can be modified with the vmtune 
command in the bos.adt.samples fileset prior to AIX 
5L 5.2, or the vmo command starting in version 5.2.  
 
Traditionally, the most important parameters are 
minperm and maxperm.  AIX documentation states 
that when the percentage of physical memory used 
for file cache exceeds maxperm percent, that only 
file cache pages will be released or “stolen” when 
additional physical memory is required.  If less 

than minperm percent of physical memory is used 
for file cache, then when pages must be “stolen” (or 
released) then both file cache and computational 
pages will be chosen.  If the percentage of physical 
memory used by file cache is between minperm and 
maxperm then file pages will generally be chosen 
unless the repage rate for file pages is higher than 
that for computational pages. [6, 7]  The 
documentation does not emphasize that the Virtual 
Memory Manager (VMM) is one of the most 
complex areas of the AIX kernel, and that 
exceptions to these documented rules do exist.  For 
example, given this standard explanation, one would 
not expect file cache usage to exceed maxperm 
percent of physical memory, yet this is not an 
uncommon occurrence. 
 
Of the remaining parameters, strict_maxperm was 
added in AIX 4.3.3 to enforce the maxperm 
limitation.  By default, strict_maxperm is 0, 
permitting file cache usage to exceed maxperm.  
When strict_maxperm is 1, file cache usage is not 
allowed to exceed maxperm percent of physical 
memory.  The maxclient parameter was added in 
AIX 5L to control the use of file cache for JFS2 files 
which are classified as “client memory”, along with 
pages cached from non-JFS file sources such as NFS. 
[6] 
 
Actual file cache use percentage can be determined 
from the numperm value displayed by vmtune on 
pre-5.2 systems.  “vmtune –A” and “vmstat –v” 
can be used on 5.2 or later systems (Figure 3).  
topas and “svmon –G” also display useful 
information about file cache and other memory 
usage. [5, 6] 
 

 
Figure 3: Viewing numperm on AIX 5.2 
 
 
3.  Common Persistent Memory Tuning Strategies 
 
The ideal file cache tuning strategy will enable as 
much memory as possible for file cache while not 
causing process computational memory pages to be 
paged out which will impede future computation.  
 
3.1 Default File Cache Tuning 
 
Although, by default, minperm is 20% and maxperm 
is 80%, it is not uncommon to see actual file cache 
size (numperm) ranging from several percent to over 

# /usr/samples/kernel/vmtune -A | grep perm 
 
        20.0 minperm percentage 
        80.0 maxperm percentage 
         5.9 numperm percentage 
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90% depending on the characteristics of the 
processes running on that system. If the “working 
set”, the amount of memory that the system requires 
to make progress, is sufficiently less than the 
physical memory size, and if computational/file 
cache memory demands made by processes on the 
system do not conflict, then the default values may 
be fine.  However, if vital computational data pages 
are paged-out, causing performance problems, then 
some other strategy may be required.  The pi and 
po columns displayed by the vmstat command are 
commonly used to diagnose paging activity. (Figure 
4)   The topas command also displays useful 
paging and memory statistics.   
 
3.2 Highly Restricted File Cache Tuning 
 
A highly restricted file cache size can be effective on 
systems that do not require a larger file cache.  Yet, 
the correct setting which both prevents paging, and 
does not otherwise impact performance must be 
determined by trial and error.  These values are 
likely to change over time as either system load 
increases or as system configuration evolves.  
Values which are too low can cause processes to 
experience the performance impact demonstrated in 
Figure 2. 
 
3.3 Work Load Manager 
 
If categorization and strict prioritization among 
processes by user name, group name, program name, 
or WLM tag can be made, it is possible to ensure 
that certain groups of processes receive a predefined 
amount of memory or CPU. [8]  Starting in AIX 5L 
it is also possible to control disk I/O bandwidth 
usage.  Yet, it is not always possible to separate 
resource utilization into separate classes.  These 
usage characteristics also change over time, making 
it hard to predict the perfect work load manager 
configuration. 
 
3.4 Pinning Pages in Physical Memory 
 
It is common for vital kernel code and data to be 
pinned in physical memory to prevent paging.  It is 
also possible to use the AIX plock() function from a 
user process to pin user process text and/or data in 
memory.  This can be useful for a small vital 
process.  Yet, pinning too much data in memory 
can directly cause memory contention.  (It is also 
important to use either the ulimit command or API 
to limit the amount of accessible memory to the 
process before calling the plock() function, 
otherwise, hundreds of megabytes of data will be 
pinned in memory, reducing the usable physical 

memory on the system for other processes. (See 
plock() man page.))  Memory pinning should only 
be used when there is sufficient unused physical 
memory. 
 
Although this approach can prevent a specific 
process from having its pages swapped out to paging 
space, it does not protect the process from other 
effects of paging or thrashing.  For example, a 
system which is thrashing uses significant CPU 
shuttling pages back and forth from paging space, 
thus less CPU time is available for all processes, 
including any pinned processes even they may be 
immune from actual paging. 
 
3.5 Reduced Load 
 
Since memory demand is usually a direct result of 
application load, reducing the number of 
transactions, users, programs, connections, etc, on a 
system can also help resolve memory problems.  
The exact technique used, and the applicability of 
this approach clearly depends on user requirements. 
 
3.6 Additional Physical Memory 
 
Extended page-in and page-out activity, shown 
through the vmstat columns pi and po (see Figure 4), 
when file cache usage is low, is an indication that 
the system may require additional physical memory.  
Increasing physical memory when extensive file 
cache space is being used may not improve 
performance.  For example, when file backup 
causes processes to page out, performance will 
continue to suffer unless a file cache larger than the 
sum of all files being backed up can co-exist with 
computational memory.  Assuming that average 
memory and disk sizes increase in parallel, a more 
reasonable solution would be to terminate processes 
that will page before the backup and restart them 
afterwards, or to limit file cache so that it does not 
cause computational pages to be paged out.  
 

 
Figure 4: Excessive Paging seen through vmstat 
 
 
 
 

# vmstat 
kthr     memory             page              faults        cpu 
r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 
 2  1 333173  1079  0 239 320 182 3438   0 1344 101684 2410 26 26 25 23 
 3  1 333173  1150  0 180 257 257 7944   0 1225 99789 2252 32 26 14 28 
 2  2 333920  1022  0 270 840 1024 1763  0 1386 100585 2402 30 28 16 26 
 2  2 333945  1107  0 331 454 329 5992   0 1439 103971 2559 31 29 12 27 
 3  0 333208   725  0 1318 199 199 3886  0 2377 98920 4488 30 30 18 21 
 2  1 333173   475  0 527 236 252 26843  1 1583 99783 3082 28 27 24 22 
 3  1 333173   474  0 316 315 315 2841   0 1368 102119 2650 27 25 25 24 
 2  1 333173   475  0 242 243 243 6844   0 1299 101807 2439 28 25 24 22 
 2  1 333173  1131  0 121 761 769 55780  0 1260 101195 2300 27 26 25 22 
 2  1 333173  1132  0 174 156 180 14073  0 1257 101946 2295 26 26 24 24 
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4. An Original Autonomic Solution 
 
An autonomic MAPE control loop is an excellent 
technique to dynamically analyze system 
characteristics which change over time and modify 
the necessary tuning values on-the-fly.  As the 
acronym indicates, a MAPE loop uses sensors to 
monitor an element, analyze this data, plan to 
improve or maintain the situation, execute the plan 
using effectors, and then repeats. [1, 9] 
 

 
Figure 5: autotune: MAPE Based Architecture 
 
4.1 autotune: Implementation Details 
 
The author developed autotune, a unique AIX 
program, to monitor and control the AIX file cache.  
The MAPE control loop, logic, and rules are all 
contained within autotune.c which uses an 
independent module, autolib, that contains sensors 
and effectors (see Figure 5).  Although the program 
is written entirely in C, an object oriented approach 
is used within autolib to hide the sensor/effector 
implementation details from the calling program.  
The sensor gathers performance statistics about the 
current file cache tuning parameters with the 
vmgetinfo() API, and current running system 
statistics including memory usage and paging 
through API’s provided in libperfstat. [7]  The 
effector modifies file cache related tuning 
parameters with the misleadingly named AIX 
internal system call vmgetinfo(). (This API is used 
to both get and set VM tuning parameters)  Early 
versions of autolib called the vmtune commands 
using fork()/exec() to enhance portability among 
different versions of AIX.  However, during high 
memory stress, the time required to call an external 
command to change parameters made the program 
entirely ineffective.  Thus, autolib was enhanced to 
control VM tuning parameters via the vmgetinfo() 
API.  The drawback is that the structures passed to 
and from vmgetinfo() are only declared in unshipped 
header files, so a different version of autolib is 
needed for each major version of AIX. 

 
To assure that autotune is always runable, even 
during periods of very high stress, setpri() was used 
to increase the priority, and plock() was used to 
ensure that it would not be paged out.  Additionally, 
autotune was developed to consume minimal 
resources.  Even while monitoring and 
coordinating memory on a highly memory stressed 
environment, autotune was observed to have a CPU 
time to real time ratio of less than 0.1%. 
 
4.3 Original Automatic Tuning Rules and Policies 
 
As a proof-of-concept project, autotune was 
designed with the following general tuning rules and 
policies.  
 
Decrease File Cache Rule: If pages are being read 
and written from paging space simultaniously, then 
reduce minperm, maxperm, and maxclient, taking 
into account the degree of paging and the minimum 
allowable values.  If this continues, turn 
strict_maxperm on. 
 
Increase File Cache Rule:  If paging space 
activity has not occurred “for a while”, and there is 
sufficient available memory, gradually increase 
maxperm and maxclient. 
 
Table 1: autotune Policy Values 
Policy Description Default Value 
Monitor Interval 4 seconds 
Maximum maxperm 90% 
Minimum maxperm 6% 
Maximum minperm 20% 
Minimum minperm 2% 
Maximum maxclient 90% 
Minimum maxclient 6% 
Rearm interval for 
increasing file cache 

60 seconds 

File cache increase delta varies 
File cache decrease delta varies 
Numeric definition of 
sufficient available 
memory for increase 

varies 

Paging threshold for 
modifying file cache 

varies 

 
4.4 Test Environment 
 
Tests were performed on a 375 Mhz 4-way SP node 
running a 64-bit AIX 5L 5.2 ML3 kernel with 2GB 
of physical memory.  Files were stored in a 
dedicated JFS file system.  (A JFS2 file system 
would likely have resulted in better results, since 

       
         autolib 

AIX Kernel: VMM Subsystem 

 
 
    autotune: control logic 

Sensors: 
libperfstat 
vmgetinfo 

Effectors: 
vmgetinfo() 

Monitor 

Analyze Plan 
Execute 

AIX File Cache 
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unlike maxperm, maxclient is strictly enforced by 
default.) 
 
Two 32-bit large-memory model test programs were 
used as CPU/memory bound and disk I/O bound 
processes.  The CPU bound program allocates a 
user specified amount of memory and repeatedly 
writes to all of this memory, reporting the number of 
megabytes of memory that were accessed every 10 
seconds.  The disk I/O bound program creates a file 
of user specified size, and then repeatedly reads the 
entire file, reporting the number of megabytes that 
were read every 10 seconds.  The test machine was 
also concurrently running a large db2 (version 8.01) 
database to further duplicate real world conditions. 
 
Performance data was gathered from output 
generated by the test programs, the autotune 
program, and Nigel Griffiths’ performance 
monitoring tool, nmon. [10] 
 
4.5 Base Line: Test Results with Sufficient Memory 
 
The test programs were executed with and without 
autotune with sufficient memory to determine ideal 
performance of the test programs, and verify that the 
autotune tool does not negatively impact 
performance in this case.  Both with and without 
the autotune tool, the CPU bound process is 
consistently able to process around 6,000 megabytes 
every 10 seconds, and the disk I/O bound process is 
consistently able to process around 3,000 megabytes 
every 10 seconds.  The disk I/O bound process is 
started and terminated in the middle of the test to 
determine the effect it has on the CPU bound 
process.  When there are sufficient memory and 
CPU resources, this impact is less than 3%, and can 
be seen in Figures 6 and 7 as a very slight dip in the 
CPU bound process’s performance.  This data 
demonstrates that autotune does not have a 
significant negative impact on the normal sufficient 
memory case. 
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Figure 6: Sufficient Memory without autotune 
 

Performance with Sufficient Memory and autotune
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Figure 7: Sufficient Memory with autotune 
 
4.6 Benefit: Test Results with Insufficient Memory 
 
Next, the test programs were executed with and 
without autotune in an environment without 
sufficient physical memory, to determine the effect 
that autotune has on their performance. 
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Figure 8: Insufficient Memory without Tuning 
 

Performance with Insufficient Memory and autotune
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Figure 9: Insufficient Memory with autotune 
 
Without autotune, the disk I/O bound process 
prevents the CPU bound process from making 
progress (Figure 8).  In fact, it takes the CPU 
bound process over 30 seconds to resume AFTER 
the disk I/O bound process terminates (Figure 8).  
With autotune, immediate tuning prevented the disk 
I/O bound process using excessive memory, but it 
still took about a minute for the CPU bound process 
to recover (Figure 9).  However, the advantage is 
that the CPU bound process recovers while the 
Disk I/O bound process is still running! (Figure 9)  
This is desirable when priority should be placed on 
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CPU bound processes providing, for instance, user 
oriented real time services. Additionally, unlike 
using a statically limited file cache, when the CPU 
bound process terminates, the disk I/O bound 
process will run at full speed. 
 
These results are enforced by the data on 
paging-space activity measured and graphed with 
the nmon tool. [10] Both high memory demand and 
an initial page-out spike are present with and 
without autotune.  However with autotune, this 
spike is 30% smaller and further page-out activity is 
suppressed.  While as without autotune, page-out 
activity (which contributes directly to CPU and 
memory bound process performance degradation) 
continue throughout the test. (Figures 10 and 11.)  
 

Paging Activity with Insufficient Memory and no Tuning
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Figure 10:Paging:Insufficient Memory, No autotune 
 

Paging with Insufficient Memory and autotune
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Figure 11:Paging:Insufficient Memory with autotune 
 
 
5. In Conclusion 
 
This paper has presented a successful and broadly 
applicable proof-of-concept in the unique 
application of an autonomic MAPE control loop to 
solve the AIX file cache tuning problem. The 
original autonomic autotune program demonstrates 
the validity of this dynamic approach by improving 
performance in highly memory constrained 
environments that would ordinarily lead to severe 
performance degradation caused by heavy paging or 
thrashing.  This technology is directly applicable to 
solving performance problems in the field before 
they happen. 

The next logical step is to extend and apply the 
approach and tool described in this paper to monitor 
and tune other operating system variables that affect 
reliability and serviceability as well as performance. 
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