
Submission Date: August 29, 2003
* trent@jp.ibm.com，Server Systems Department

1

64-bit Software Performance Misconceptions

Scott Trent *

There are many excellent reasons to implement 64-bit programs on IBM pSeries platforms, but some commonly

accepted performance beliefs are actually misconceptions. This paper describes some of these reasonable sounding
beliefs, then proceeds to demonstrate the reality and offers both standard and creative alternatives to achieve the original
goal. This paper offers concrete suggestions to assist information system design/development and programming
projects (including an unusual technique to allow 32-bit programs to directly utilize significantly more than 4GB of real
memory). Familiarity with this material will assist professionals who are involved with implementing projects based on
64-bit pSeries technology.

Key Words & Phrases: 64-bit, performance, scalability, programming, system implementation

1. Introduction

There is on-going Customer demand to improve the
performance of new and existing information
systems while also meeting increasing scalability
requirements. [1] The 64-bit application
environment provided by the pSeries product line is
designed to improve scalability, functionality, and
performance while maintaining maximal
compatibility with existing applications. [2, 3, 4, 5]

Although there is a strong industry-wide interest in
providing and using 64-bit capable products, there
are also some misconceptions that professionals
involved in implementing or designing projects
based on 64-bit pSeries machines should be aware
of. An understanding of the reality behind some of
these misconceptions will help IT professionals
maintain realistic expectations while making correct
design decisions.

Along with common sense suggestions, this paper
proposes a technique which can be used to allow
custom developed 32-bit programs to easily and
directly utilize more than the commonly accepted
maximum of 4GB of real memory.

2. Myth: 64-bit programs are twice as fast as 32-bit
programs

There is a common perception, perhaps not
unrelated to extensive marketing, that 64-bit
environments necessarily perform significantly
faster than 32-bit environments. There is some
truth to this, since a hardware architecture that
transfers data in 64-bit chunks in a fixed period of
time has a clear performance advantage over an
architecture that can only transfer 32-bit chunks in
the same period of time. Likewise theoretical

performance advantages can be realized in certain
applications which benefit from being able to
perform a 64-bit arithmetic operation rather than the
equivalent 32-bit operation. Also, a 64-bit program
which is able to address massive amounts of
in-memory data will perform better than a program
which is forced to wait on disk I/O.

2.1 64-bit Performance: The Reality

Clearly a 64-bit program running on a recent 64-bit
SMP with fast CPU’s and a large memory, would
have a performance advantage over a similar
program compiled in 32-bit mode, running on an
obsolete 32-bit system. The primary performance
advantages that a 64-bit program has over a 32-bit
program are (1) the ability to simultaneously address
over 4GB of memory, and (2) the ability to use
instructions for calculation and data manipulation of
64-bit quantities. [1, 6, 7]

The ability to simultaneously address over 4GB of
memory in a 64-bit process is largely a programmer
convenience, since there are techniques (described
later in this paper) which 32-bit processes can use to
take advantage of large memory systems. However,
“programmer convenience” can not be discounted,
since program simplification constructs result in
easier to understand, and maintain programs, which
contain fewer errors.

Depending on which operations and function calls
are used, one can observe varying positive and
negative performance differences between the same
code running in 32-bit and 64-bit mode.
Performance testing on multiple pSeries machines
demonstrates that, using a 32-bit AIX 5.1 kernel, the
performance change between many operations
running on 32-bit mode compared with 64-bit mode
is less than around 10%. (See Figure 1.) Notable

2

exceptions include the following:
- 8-byte multiplication saw a 50% reduction in

time when run in 64-bit mode.
- strcpy() had a 30% performance hit in 64-bit

mode.
- Simple system calls such as getpid() had a 40%

performance hit in 64-bit mode.
- Function call overhead saw a 30% performance

hit in 64-bit mode.

Figure 1. Percentage performance difference
measured between 32-bit and 64-bit mode.

(AIX 5.1, 32-bit Kernel, multiple pSeries systems)

In addition to whether the program runs in 32-bit
mode or 64-bit mode, the type of kernel used will
also affect performance. The largest impact
observed when changing between a 32-bit and 64-bit
AIX 5L kernel was on simple system calls such as
getpid(). Although a 32-bit program will have the
same performance with respect to getpid() on either
a 32-bit or a 64-bit kernel, a 64-bit program running
on a 64-bit kernel will run getpid() over 50% faster
than a 32-bit program on the same kernel. (See
Figure 3.)

The program used to measure the time required to
execute the getpid() system call is shown below as
“Program 1”. This program was compiled once as a
32-bit executable, and once as a 64-bit executable,
and then ran under 32-bit and 64-bit kernels on
various 64-bit capable pSeries machines, keeping
other variables constant. Other operations and
API’s were measured in a similar fashion by placing
the code to be measured between read_real_time()
function calls. (Sections of this code are documented
in the AIX Base Operating System and Extensions

Technical Reference for the time_base_to_time()
function.)

Program 1: Sample program used to measure time to

execute getpid() system call.

2.1.1 64-bit Performance: Real Life Analysis

It could be argued that programs which call getpid()
or other functions in a tight loop are not
representative of real life programming. To see the
affect that compiler mode and selected kernel has on
a real life program, I recompiled the AIX 5.1 source
code for the grep command as both a 32-bit
executable and a 64-bit executable. I then tested
each of these programs on a large file using the AIX
5.1 32-bit kernel, and retested it using the same
machine and file with the AIX 5.1 64-bit kernel.
Although the 64-bit grep running on the 32-bit
kernel ran about 1% slower than the 32-bit grep on
the 32-bit kernel, both grep programs ran several
percent faster on the 64-bit kernel, with the best
performer being the 64-bit grep running on a 64-bit
kernel which ran 3.4 percent faster than the 32-bit
grep running on the 32-bit kernel. The
performance improvements observed in both the
32-bit and 64-bit executables when running on a
64-bit kernel lends credence to claims that a 64-bit
kernel can efficiently transport data internally as
64-bit chunks

-60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0%

bcmp()
bcopy()
bzero()

strcmp()
strcpy()
getpid()

open()/close()
Function Call

nullloop
binary or

4 byte add
4 byte mult
8 byte add
8 byte mult

main()
{ timebasestruct_t start, finish;
 int i, seconds, nanoseconds;

 read_real_time(&start, TIMEBASE_SZ);

/* START CODE MEASUREMENT */
 for (i=0;i<500000;i++)
 getpid();
/* FINISH CODE MEASUREMENT */

 read_real_time(&finish, TIMEBASE_SZ);

 time_base_to_time(&start, TIMEBASE_SZ);
 time_base_to_time(&finish, TIMEBASE_SZ);

 seconds = finish.tb_high - start.tb_high;
 nanoseconds = finish.tb_low - start.tb_low;

 if (nanoseconds < 0) {
 seconds--;
 nanoseconds += 1000000000;
 }

 printf("%d.%d seconds¥n", seconds, nanoseconds);
}

3

Figure 2: Performance difference as a percentage

between 32-bit grep and 64-bit grep running on AIX
5.1 32-bit and 64-bit kernels.

2.2 Alternative Performance Improvement

Performance improvement is a highly involved topic
with many potential solutions depending on the
exact workload and application. Hardware
oriented contributors to improved performance
include faster clock speed, larger L1/L2 caches,
more physical memory, more CPU’s, more and
faster disk drives, more and faster adapters, etc.
When developing applications, the utilization of
correct algorithms and efficient programming
practices is fundamental to realizing good
performance. Finally, an improperly tuned system
may realize performance improvements through
system parameter modification. [1, 8]

3. Myth: A 64-bit kernel is required to run 64-bit
programs

Since it is true that 64-bit capable hardware is
required to run 64-bit programs, it seems logical to
assume that since AIX 5L offers a 64-bit kernel, that
it too would be required to run 64-bit programs.
Additionally, an impression that 32 and 64-bit
architectures are significantly different, may lead to
the assumption that all components (hardware,
kernel, applications, etc.) must use the same mode
whether that be 32-bit or 64-bit.

3.1 32-bit Compatibility: The Reality

An understanding of the history of AIX 64-bit
development, and current 64-bit environment will
easily resolve this misconception. When
IBM-Austin provided initial support for 64-bit
programs in AIX 4.3, the only kernel provided ran in
32-bit mode. This kernel provides simultaneous
support for both 32-bit and 64-bit programs. [6]

When a 64-bit program passes an 8-byte pointer to
the kernel in a system call, the pointer is mapped
into an equivalent datatype by libc.a which the
64-bit kernel can then use to access the referenced
memory. [7] (This process is also referred to as
“shaping”.)

Starting in AIX 5L, a system administrator can
choose to use either a 32-bit or a 64-bit kernel on
64-bit hardware. Binary compatibility is a key
design point in AIX, so both AIX 5L kernels were
designed to be able to support both 32-bit and 64-bit
programs, much in the same way that the 32-bit
4.3.3 kernel could run both 32 and 64-bit programs.
[9] Not only does this enable the continued use of
existing Customer applications with either kernel,
but this simplifies AIX itself since the majority of
AIX commands themselves are compiled as 32-bit
programs, and will remain such for the foreseeable
future.

It is an interesting but logical twist that 32-bit
programs have their pointers mapped (shaped) when
using system calls on a 64-bit kernel. All other
things the same, one can expect a slight performance
advantage to running 32-bit programs on 32-bit
kernels, and 64-bit programs on 64-bit kernels. In
fact this was observed in the results of Program 1
which issues the system call getpid() in a tight loop.
The key results of this test, as shown in Figure 3,
show that there is a performance penalty for 64-bit
programs using system calls on a 32-bit kernel, and
that 64-bit programs running on a 64-bit kernel have
a performance advantage over all other
combinations. (These results also follow the same
pattern as observed for the grep program in Figure
2.)

Figure 3: Performance difference as a percentage

between 32-bit getpid() and 64-bit getpid() running
on AIX 5.1 32-bit and 64-bit kernels.

0.00%

2.20%

3.43%

-1.09%

-2.00% -1.00% 0.00% 1.00% 2.00% 3.00% 4.00%

32bit grep:32bit kernel

64bit grep:32bit kernel

32bit grep:64bit kernel

64bit grep:64bit kernel

0

1.73%

60.31%

-41.09%

-60% -40% -20% 0% 20% 40% 60% 80%

32bit getpid:32bit kernel

64bit getpid:32bit kernel

32bit getpid:64bit kernel

64bit getpid:64bit kernel

4

4. Myth: Only 64-bit programs benefit from 64-bit
hardware.

If one assumes that the only benefit of 64-bit
capable hardware is the ability to run 64-bit
applications, then it would seem logical to conclude
that 32-bit applications have nothing to gain from
running on 64-bit hardware.

4.1 32-bit Programs on 64-bit Hardware: The
Reality

In addition to adding 64-bit capability, IBM has
provided enhancements such as increased clock
frequency, Silicon on Insulator, copper technology,
increased on-chip cache and memory, increasingly
parallel instruction decoding, improved speculative
execution, etc., to the 64-bit capable CPU’s used in
the pSeries product line. [2, 3, 4, 5] These offer
performance improvements to applications running
in both 32-bit and 64-bit mode. Besides these
enhancements, newer systems also support larger
amounts of physical memory, more scalable SMP’s,
and tend to have high performance adapters,
peripherals, etc. which can also benefit 32-bit
applications.

5. Myth: Only 64-bit programs can benefit from
more than several gigabytes of physical memory

Since a 32-bit program can only address 232 or 4GB
of memory it seems reasonable to assume that only
64-bit programs can directly use over 4GB of
memory.

5.1 Benefits of Large Memory: The Reality

Regardless of how much memory a single 32-bit
process can address, it is obvious that all processes
on a machine stand to benefit from reduced memory
contention and increased file cache utilization which
result from increased physical memory.

Additionally, although a 32-bit process can not
simultaneously address more than 4GB of memory,
it is possible for a 32-bit process to use shared
memory mechanisms in order to serially access all
available virtual memory on a system.
Conceptually, a 32-bit kernel uses a similar
technique when it modifies segment registers in
order to access the full range of physical memory on
an AIX system, which can exceed 4GB even on a
32-bit machine.

5.2 Large Scale Memory Access from 32-bit
Programs: The Details

A 32-bit program can use shmget() to request
multiple shared memory segments. The total size
of all requested segments for a single 32-bit process
CAN exceed 4GB, however, the total number of
shared memory segments on a single AIX 4.3.3
system can not exceed 131072. Additionally, there
are various limitations on how many of these can be
used simultaneously by the same process. Clearly,
a 32-bit process can not exceed the 4GB
addressability limitation, and there is a limited
amount of memory in the 32-bit process space
which is available for shared memory usage. For
example, an AIX 4.3.3 32-bit process has a
maximum of 2.75 GB of space available for use as
shared memory. (For detailed information please
refer to the AIX documentation for the shmget()
function.)

Once a program has created multiple shared memory
segments, it can use shmat() and shmdt() to attach to
and detach from these segments. (A shared
memory segment must be “attached” before it can
be used by a process. Segments can be freely
attached and detached without significant
performance impacts.) The primary restriction is
that more than 2.75 GB of shared memory can not
be simultaneously addressed from the same process.
There are also limitations on the number of shared
memory segments that can be simultaneously
accessed (i.e., attached) from a 32-bit process.
(Once again, the shmget() documentation describes
these in detail.)

Within these limitations it is possible to write a
32-bit program which uses a massive amount of
memory in a serial fashion. The sample code in
Program 1 creates thirty-two 1 GB sized shared
memory segments, then precedes to write to and
read from each segment in serial. This 32-bit
program can perform random-access attaches and
detaches to each segment, and thus has the ability to
effectively use 32 GB of memory! With virtual
memory, a full 32 GB of physical memory is not
required. In fact, due to the delayed memory
acquisition mechanism, this program can also run on
a machine with less than 32GB of paging space.
Of course, physical memory or paging space will be
required for each page of memory which is actually
touched. Another advantage of using shared
memory is that these segments are persistent and
will not be reclaimed by the system unless the
system is rebooted, or these segments are explicitly
released. (Note: In the interest of simplicity, this

5

program as shown below does not perform
fundamental error checking which would normally
be considered mandatory.)

Program 2: Using 32GB of memory in a 32-bit
process

Similar results can be accomplished with the use of
mmap() and memory mapped files.

6. Myth: There is no benefit to running 64-bit
programs on small memory systems

Since a primary advantage of using 64-bit programs
is the ability to address more than 4GB of memory
simultaneously, there may seem to be no advantage
to running 64-bit programs on a system with less
than 4GB of physical memory.

6.1 Small Memory 64-bit Systems: The Reality

6.1.1 Scalability

In general, the scalability offered by larger kernel
tables in the 64-bit kernel can benefit all sized
systems. [9] Also, the increased number of
segments available to a 64-bit program enable the
use of more than 11 shared memory segments or
mmap()ed memory areas without resorting to the
sometimes problemantic EXTSHM functionality.

6.1.2 Large Virtual Address Space

Although a 64-bit program can theoretically address
264 bytes of memory, it is sometimes easy to forget
that the memory that a 64-bit process can use is not
limited by physical memory, but rather by virtual
memory. Thus, a system with a relatively small
physical memory and a significantly larger paging
space can support 64-bit programs which can use all
of the paging space as virtual memory. Under
common programming situations, this could lead to
memory over-commitment which would cause
severe performance problems, but there are classes
of programming problems which could benefit from
a large sparsely used address space. For example,
a program could allocate a 10 GB table, and then use
a simple, easy to maintain indexing scheme which
only uses a small fraction of the table. The entire
table would be addressable, but only that which is
currently used would consume system resources.

6.1.3 Persistent Memory

The ability of a 64-bit program to use a large
address space makes it an ideal tool to implement or
use large scale persistent memory systems.

6.1.4 64-bit Data Manipulation and Calculation

As demonstrated by the data in Section 2 of this
paper, although doubled performance is not
observed for most 64-bit operations, performance
improvements can be realized by using the 64-bit
mode.

7. In Conclusion

Although the pSeries product line provides an
excellent 64-bit environment, it is important to have
realistic performance expectations regarding 64-bit
technology. 64-bit technology is one of the tools
available to IT professionals to maximize
performance along with scalable
hardware/Operating System, algorithms, shared
memory, and tuning. As a key scalability enabler,
64-bit technology provides both direct and indirect
benefits to applications, which an IT professional
must be aware of when participating in information
system projects.

Bibliography

[1] Hoetzel, Fernandez, Koh, Marshall, Martin, AIX

#include <sys/shm.h>

main() {

int shmid[32];
int i;
char *p;

/* create 32 1GB shared memory segments */
for (i=0;i<32;i++)

shmid[i]=shmget(IPC_PRIVATE,
1024*1024*1024,S_IRUSR|S_IWUSR);

/* Attach, use, detach memory */
for (i=0;i<32;i++) { // segments can be

 p=(char *)shmat(shmid[i],0,0);// attached and
 /* use memory */ // detached at will
 shmdt(p); // allowing for full
 } // random access!

/* repeat attach, use, detach loop */
for (i=0;i<32;i++) {

 p=shmat(shmid[i],0,0);
 /* use memory again: it is persistent until released */
 shmdt(p);
 }

/* release memory */
for (i=0;i<32;i++)

 shmctl(shmid[i],IPC_RMID,0);
}

6

64-bit Performance in Focus, IBM,
SG24-5103-00, 1998.

[2] Papermaster, Dinkjian, Mayfield, Lenk,
Ciarfella, O’Connell, DuPont, “POWER3: Next
Generation 64-bit PowerPC Processor Design”,
www.ibm.com/servers/eserver/pseries/library/w
p_systems.html, 1998.

[3] Borkenhagen, Storino, “4th Generation 64-bit
PowerPC-Compatible Commercial Processor
Design”,
www.ibm.com/servers/eserver/pseries/library/w
p_systems.html, 1999.

[4] Borkenhagen, Storino, “5th Generation 64-bit
PowerPC-Compatible Commercial Processor
Design”,
www.ibm.com/servers/eserver/pseries/library/w
p_systems.html, 1999.

[5] Tendler, Dodson, Fields, Le, Sinharoy, “IBM
eServer POWER4 System Microarchitecture”,
www.ibm.com/servers/eserver/pseries/library/w
p_systems.html, 2001.

[6] Cannon, Jones, Trent, Simply AIX 4.3, Edition 2,
Prentice Hall, ISBN 0130213446, 1999. (pp
215-217)

[7] Vetter, Baba, Iacopetta, Vagnini, AIX Version 4.3
Differences Guide, IBM, SG24-2014-02, 1999.

[8] Trent, Monterey/64: Technical Introduction and
Software Porting presentation materials, ISE
Technical Conference, 2000.

[9] Akeret, Hollanders, Lane, Peterson, AIX 5L
Differences Guide Version 5.1 Edition, IBM,
SG24-5765-01, 2001.

© Copyright IBM Japan Systems Engineering, Co Ltd.
2003 All rights reserved.

